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Abstract

This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded
material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous
hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoelasticity.
Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in
the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of
zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful
attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its
homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Intense heat can be generated in structures during normal operation, under special conditions in
emergencies, or while they are being burnt down in disasters. As an external effect on structures, heat can be
as significant as directly applied forces, and can cause damage through excessive thermal stresses. Inves-
tigations into thermal stresses in elastic bodies are numerous, and the majority have been recorded in
textbooks and monographs (Boley and Weiner, 1960; Barber, 1992). One of the recent focuses in the in-
vestigation of thermal stresses has been the development of new materials that can adapt to high tem-
perature environments and tenaciously endure serious thermal stresses (Praveen and Reddy, 1998; Loy
et al., 1999; Ng et al., 2000; Reddy, 2000; He et al., 2001).
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Functionally graded materials (FGMs) can be used to alleviate the harmful effects of heat on struc-
tures. FGMs are fabricated by continuously changing the volume fraction of two basic materials, usually
ceramic and metal, in one direction. The FGM materials that are thus formed exhibit isotropic yet non-
homogeneous thermal and mechanical properties. In the theory of elasticity, FGM materials are mostly
treated as non-homogeneous materials with material constants that vary continuously along one spatial
direction. Noda (1991) presented an extensive review of thermoelastic and thermo-inelastic problems.

A number of studies have dealt with thermal stresses in the basic structural components of FGMs.
Shen (2001a,b, 2002a,b) has studied the thermal postbuckling of functionally graded plates and shells.
Zimmerman and Lutz (1999) presented solutions to the problem of the uniform heating of a circular
cylinder by the Frobenius series method. Using a perturbation approach, Obata and Noda (1994) inves-
tigated the thermal stresses in an FGM hollow sphere and in a hollow circular cylinder. Ootao and Tan-
igawa (1999) conducted an approximate analysis of three-dimensional thermal stresses in an FGM
rectangular plate. They also discussed the optimization of the material composition of FGM hollow cir-
cular cylinders under thermal loading, based on approximate solutions of temperatures and thermal stresses
(Ootao et al., 1999). Liew et al. (2001) presented an investigation of the active control of FGM plates that
were subjected to a temperature gradient by the finite element method that was based on the first-order
shear deformation theory. With the use of the finite element method, Reddy and Chin (1988) considered
thermomechanic analysis, including the coupling effect, for FGM plates and cylinders. Tanaka et al. (1993)
designed FGM property profiles using a sensitivity and optimization method that was based on the re-
duction of thermal stresses.

Cylindrical shells are often used as basic structural components in engineering applications. Much re-
search has been conducted on isotropic or laminated composite plates and shells (Liew and Lim, 1995;
Karunasena et al., 1995; Liew and Teo, 1998). To our knowledge, only a limited amount of work has been
carried out on FGM shells. Hence, this article will develop an analytical model to deal with FGM hollow
circular cylinders that are subject to the action of an arbitrary steady state or transient temperature field.
Solutions are derived for the non-homogeneous thermoelasticity of steady-state temperature distributions,
thermal stresses, and thermal displacements in an FGM cylinder. Numerical results and some important
conclusions regarding the general properties for thermal stresses in FGM cylinders are presented and ex-
amined. These results can serve as benchmarks for future related research.

To develop the solution, the FGM cylinder is first sectioned into a number of sub-cylinders, and each of
the sub-sections is approximated as homogeneous. Displacements and stresses within the homogeneous
sub-cylinders are obtainable from the homogeneous solutions, from which the continuity conditions of the
displacements and stresses at the interfaces can be formed. When the number of the sub-cylinders becomes
infinitely large, they constitute a FGM cylinder, and the continuity conditions at the interfaces become a
system of ordinary differential equations, which are solved analytically or numerically. Solutions for the
FGM cylinder are therefore obtained through matching an infinitely large number of homogeneous so-
lutions, with no recourse to the basic equations of non-homogeneous thermoelasticity.

2. Mathematical formulation

Steady-state temperature solutions are considered and determined for a hollow circular cylinder of FGM
with an inner radius ry, outer radius ry, and thermal conductivity A(r) = Ape?”’, 19 and p being constants. A
cylindrical coordinate system (r,0,z) is established for reference, with the z-axis lying on the axis of the
cylinder. As we seek a thermal stress solution of the FGM cylinder in the plane strain condition, the
temperature is independent of z.

To begin, we consider the temperature of axial symmetry. For the special case of p = 0, i.e. when the
material is homogeneous, the temperature solution is
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T(r)=F + Glogr, (1
where F' and G are constants, depending on the boundary conditions of the problem.
To obtain the solution for the FGM cylinder, we proceed as follows:

(i) Section the FGM cylinder by cylindrical surfaces » = ry,r,...,r,_1, Where ry =rg+ h, ry=r + h =
ro + 24, etc., to divide the whole cylinder into n sub-cylinders of uniform thickness 4 = (ry — ry)/n.

(i1) The innermost sub-cylinder is numbered as sub-cylinder 1, the sub-cylinder next to it as sub-cylinder
2, and so on.

(ii1) Assume that the non-homogeneous sub-cylinders are homogeneous, with a constant conductivity
Aoexp(pri_1), ri1 = ro + (j — 1)h, for the jth sub-cylinder.

(iv) The solution in Eq. (1) now applies to each of the sub-cylinders, which have been assumed to be ap-
proximately homogeneous. For the jth sub-cylinder, the temperature is denoted as

T0(r) = FY + G logr, 1, 2)

where the superscript indicates that the affixed quantity belongs to the jth sub-cylinder.

(v) For a large n, the thickness 4 is small, and the difference between F(!) and F® should be insignificant.
The combination of solutions (2), j = 1,2,..., N, should be a good approximation of the solution of
the FGM cylinder, provided that the constants F), G, F®) G, ... are determined first by the con-
tinuity conditions of temperatures and heat flux at the interfaces of the sub-cylinders, and finally by
the boundary conditions of the FGM cylinder.

(vi) When i — 0, the difference between F(!) and F® becomes infinitesimally small, and the two can be
written in terms of a single function F(r):

ol

PO = Fln), P2 = F(n) ~ Pl + ©)

Similar formulas hold for GV and G® when another function, G(r), is introduced, and for all other
F%s and GYs.

(vii) All continuity conditions at the interfaces, in the form of 2(n — 1) simultaneous algebraic equations,
reduce to two simultaneous differential equations, with F(r) and G(r) as unknowns.

(viii) By solving the two simultaneous differential equations for F(r) and G(r), the exact solution for the
FGM cylinder is obtained as

T(r) = F(r) + G(r) log . (4)

In the following, all of the temperature and thermal stress solutions for the FGM cylinder are determined in
accordance with the above solution scheme.
The continuity conditions of the temperatures and heat flux at » = |, which is the interface of the two
innermost sub-cylinders, take the following form:
F? 4+ GPlogr, = FY +GYlogr,
2 1
40 G 40 G (5)
r r
Eq. (5) can be rewritten as

5 (D)
F@ =FM 4 <1 —%)Gmlogrl,
Y
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For small /, Eq. (6), and similar equations for F®, G®, etc., provide an approximate solution for the
FGM cylinder. To develop an exact solution we consider the case of # < 1, for which the following for-
mulas hold:

F(l) :F(I”()), G(l) = G(}"0>7

F? =F(r) = F(ry) + [

o (7)
A
FE e~ 1 — ph,

h 1 1 h
r1:r0+h:r0(l—|——), —Q"J—<1——>7
ro r ro "o

where F(r) and G(r) are two sufficiently smooth functions. The substitution of Eq. (7) into Eq. (6) and the

application of & — 0 to the resultant equations leads to the following two simultaneous differential

equations:

dr dG

% = pG(r) logr, dﬁ’) = —pG(r). (8)
The same differential equations are obtained when we consider the limiting case of 2 — 0 for the con-

tinuity conditions at other interfaces. The solution for G(r) in Eq. (8) is easily obtainable, and that for F(r)

can be obtained by integration by parts. The result is as follows:

Go — REi(pr) — e ™logr,  p >0,
F(}’) = GOa pP= 07
Gy + RE(—pr) — Fpe " logr, p <0,

and
Fe™?, p>0,
G(r) = { ko, r=0, 9)
Fbeipra p< 07
where
o0 eft o0 ef[
E\(pr) = / —dt, Eil(-pr)= / — dt (10)
o ! o L
are exponential integrals, and have the following series expansions (Abramovitz and Stegun, 1964):

E\(pr) = —y — log(pr) — zw: %

)

N (11)
E(~pr) = 7 +log(—pr) + 3 EC2)” _pr)

with y = 0.5772156649 ... being Euler’s constant. Fy and G, are arbitrary constants that depend on the
boundary conditions of the problem.
The substitution of Eq. (9) into Eq. (4) yields the final temperature solution as follows:

Gy — RE (pr), p>0,
T(r) =4 Go+ Fylogr, p=0, (12)
Go + RE(—pr), p<O0.
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The fact that Eq. (12) is the exact temperature solution for the FGM cylinder can be verified by directly
substituting it into the equation of heat conduction for non-homogeneous media (Tanaka et al., 1993). The
two arbitrary constants that are contained in Eq. (12), i.e. Fy and Gy, can be adjusted to satisfy an arbitrary
axisymmetric distribution of temperature or heat flux in the boundary conditions for the FGM cylinder.

Turning to the solution for temperatures of #-dependence, for the special case of p =0, i.e. for a ho-
mogeneous cylinder, the following solution can be obtained:

G,
T(r,0) = (F,,r”—i——) cosnfl, n=1,273, ..., (13)
r}’l

where F, and G, are constants.

The solution scheme that is used above for obtaining the axisymmetric temperature distribution is again
used for obtaining the §-dependent temperature distribution. The continuity conditions of the temperatures
and heat flux at » = r;, which is the interface of the two innermost sub-cylinders, can be written as

1 )»(1) /1“) G0
[ — Z (1) SRS et/ 2
E7=3 (1 i 22 Ao 22 )
(14)
(2) ! a (1),.2n a (2)
Gn :E 17)\'(2) F;l 7"] + l+p Gn .
After applying the limiting process to Eq. (14), it reduces to
dr,(r) _ p Gu(r)] dGu(r) _p o
28— LlRe -2 | SR R0 - 6,0)) (15)

Eq. (15) is solved by the semi-inverse method (Barber, 1992). In doing so, a basic form of the solution must
first be devised and proposed. Let us suppose that

Sy S, +% +% +fot fir+ fort 4o,

Fy(r) = 21 22

G,(r)=go+gir+gr*+---

(16)

The unknown constants f_(,_1y, f-(24-2)s - - - » f=1, /0, ... and go, g1,... in Eq. (16) should be fixed by first
substituting Eq. (16) into Eq. (15), and then comparing and equating the coefficients of all like terms on
both sides of the resultant equations. This yields

_ __ D& _ b
ff(2n71) - 2(2}’1 — 1)7 g1 P )
fni :P[gj—l *.f—(znfjﬂ)] =231,
2(j —2n) -
17
fj:w’ i=1,23,...,
2j
e
J

where fj and gy are two arbitrary constants that depend on the boundary conditions of the problem. The
final solution for the FGM cylinder is

r

T(r,0) = [F,,(r)r" + G",(f) } cos ). (18)
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The fact that solution (18) is exact can be confirmed by substituting it into the equation of heat conduction
in non-homogeneous media (Tanaka et al., 1993).

Another solution is obtained when cos 0 in Egs. (13) and (18) is substituted with sin n0. When p = 0, all
of the coefficients in Eq. (16) become zero, except f, and g, which reduces solution (18) to homogeneous
solution (13).

Solution (18) with factor cosnf and its associate with factor sinnf, n =1,2,..., make up a complete
system of solutions for the FGM cylinder, and can be used to solve any particular type of boundary value
problem of §-dependence.

3. Thermal stresses: axisymmetric temperature

The thermal stresses in the FGM hollow circular cylinder that are caused by an axisymmetric temper-
ature distribution are to be determined. Poisson’s ratio of the cylinder is constant, the coefficient of linear
thermal expansion is assumed to be o = oy exp(gr), and the shear modulus is taken as u = u, exp(sr), where
%, ¢, Uy, and s are material constants. It is assumed that the cylinder is in a plane strain condition and its
two circular cylindrical surfaces are traction free.

As before, the FGM cylinder is initially approximated as a piecewise homogeneous cylinder. For the jth
sub-cylinder, the temperature is given by Eq. (2):

T9 () = FY + GY log r;_1 = constant. (19)

Due to the uniform temperature (19), the radial stress and displacement that are induced in the jth sub-
cylinder by the temperature alone, which is denoted with a superscript asterisk, take the form of

6 0(r) =0, wl(r) = (1+v)a 70y, 20)
Similarly, we have
() =0, wU(r) = (1+ v)altTuy, (21)

Egs. (20) and (21) show that the stresses are continuous at the interface but the displacements are not.
Consequently, additional traction systems must be set up in the sub-cylinders to eliminate the discontinuity
in the radial displacements. Actually, the traction systems are thermal stresses that occur in the piecewise
homogeneous cylinder. In the axisymmetric state, they can be derived from the stress function ¢(r) as

$(r) = Ar* + Blogr. (22)

With the use of the following general formulas for plane strain:

13¢ 1% ¢ 0 [(10¢
or rar—i—r2 00*’ 0=z O a\ro0) v(o, + 09) — aET,
_Ou, o, v(og+o0.) _10uy  u o, v(og+o.) 3
“=5~F 5 T e=mgt g g b (23)
L
“0 =3\ Ty S 2u’

(all components of stress and strain that do not appear in Eq. (23) vanish in the present problem) and by
combining the effects of the traction systems and the temperature, the conditions for the continuity of
displacements and stresses at the interface can be written as



K M. Liew et al. | International Journal of Solids and Structures 40 (2003) 2355-2380 2361

uf’)(r,) = uyﬂ)(rj% Jy)(’/j) = O-yﬂ)(rj)v (24)
where
() (k=1 o _ 1 «0) 0 )  BY
u! (r;) = 4 210 ri—B 2#” +uV(r;), ol (r;) =24 +r_}’
-1 . 1 )
(I+1 G+ M T pliD) S+ (0
( ) 4 zﬂ(m)r] B 2,u(/'+l>rj +u, (r/), (25)
BU+D
G(J-H( ) ZA(/-H r2 7
1

Kk = 3—4v for plane strain.
By employing Egs. (8) and (9) via mathematical manipulations, the difference of the displacements ()
and u*® for p > 0 can be expressed as

uV —w® = —(1 4+ v){a(r)G(r1) — Foga(r))riE(pr1) + qGorie(ri) }h + - - -, (26)

where Fy, Gy and G(r) are given in Egs. (8) and (9). The case of p < 0 will be considered later.
Using Egs. (25) and (26) in the limiting process as # — 0, Eq. (24) is transformed into the following set of
differential equations:

dA(r d

PO a0+ %280 410,

4B (27)

d(rr) = dnr?A(r) + dnB(r) = 271 (r),
where
Kk—1)s s
di :(1 ) , do=—1——, dy=-2dy, dn=-2dp,
+ K 14k
L4y Ferr (28)

flr)= 21 F Koco,uoew’{ P RgE:(pr) + qGo}, w=gq+s.
To facilitate the solution of Eq. (27), we write

A(r) = A*(r)exp(wr), B(r) = B*(r) exp(wr) (29)
and substitute Eq. (29) into (27) to obtain

P = Dv+H, (30)
where

p_ [d4()dB(n]

N dr dr
~ df ﬁ T T
D=| % | V=B H=[H0) - 2H()
1y, ds
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in which

dfl =d; —w, d}} =dn—w, dfz = dy, dz*l = dh,

c_ 1+v
H(r):KO{CLlog(r)+7]+co—|—c1r—|—czr2—|—---}, Koz—ZH—Kocouo,
31
co=Fq, c.1=F, c=-pFk+qFK+qGy+ Fqlog(p), 3D
Fog(—1)p  Fy(—p)"!
¢ = Oq(“')nyr o p)| for j=1,2,...
JJ! G+ D!

The complete solution of Eq. (30) consists of two linearly independent homogeneous solutions and a
particular solution (Tenenbaum and Pollard, 1963). We seek the particular solution by splitting it into two
parts:

A,(r) =4, (r) + 4,(r),  B,(r) =B, (r) + B (r). (32)

P

The first part, 45, (r) and B, (), is used to account for the logarithmic term in Eq. (30) that is contained in
H(r), while the second part, 4,(r) and B;,(r), accounts for the remaining terms of H(r). For the first part
Wwe propose

A (r) = wr + wr + -+ (arr + axr’ + - ) log(r), (33)
B, (r) = P{or 4 var? + - 4 (byr 4 byr* 4 ) log(r)}.

Eq. (33) exactly satisfies Eq. (30), provided that we take

a; = Kocp, uy =—Kocp,, b= —gKOCL, vy :§KOCL;

1 * *
= ;(dn”jfl +di01 — a;), (34)

[ —
—

_ * *
a; =~ (dy\aj-1 +dizbi1),  u;

~
—_—

by =- (dyaj-1 +dyybj1), v, :j_’__z(dzlujfl +dyvj-1 — b)),

~
+
[\

where j = 2,3, ...
For the second part of the particular solution it is supposed that

A*

a_
pz(r)271+ao+alr+a2r2+~--7 B;z(r):b0+b1r+bzrz+-~- (35)

It can be shown that Eq. (30) is exactly satisfied by Eq. (35), providing that

K()C_l a_y
- S ag=0, by=——"1, b =dbh,
&, —d;, Ao 0 1 2200

a_

[a—

bj = - (d;laj,3 + d;zbjfl — 2K()Cj,3) for ] = 2, 3, ey (36)

—_—

a; :;(dflaj,l —|—dr2bj+1 —l—K()Cj,]) for j=1,2,...

This concludes the development of the particular solution. The particular solution exactly determines the
effect of the temperature on the deformation of the FGM cylinder, which causes tractions on the cylindrical
surfaces that in general do not vanish. The two homogeneous solutions to Eq. (30) with H(r) =
—2r2H(r) = 0 should be added to the particular solution to cancel the redundant tractions. The thermo-
elasticity solution of the axisymmetric problem for the FGM cylinder is obtained as
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(k= DA@r)r  B(r) L
) 2yt a(r)(1+v)[F(r) + G(r) logrlr, uy=u. =0,
B(r) (37)

0. =24() + 20 5= 24(r) - 20

2 72

u, =

o, =v(o,+ ag) = 2a(r)u(r)(1 + )[F(r) + G(r)logr], 0., =0,y =04 =0,
where
A(r) = Ai(r) + Az(r) + 4,(r),  B(r) = Bi(r) + Ba(r) + B,(r), (38)

where 4,(r), A2(r), Bi(r) and B,(r) are the homogeneous solutions.

The fact that Eq. (37) is exact follows from the solution procedure and the derivation. The exactness can
also be proven as follows. The three displacement components in Eq. (37) are continuous and single-valued.
From them the six stress components can be derived by Eq. (23), Hooke’s law, and the result is as shown in
Eq. (37). That these stress components satisfy the equations of equilibrium can be confirmed by directly
substituting them into the equations.

When p < 0, E;(pr) in Egs. (26) and (28) should be replaced with E,(—pr), whereas ¢, and ¢, in Eq. (31)
should be rewritten as

co = —pFo + qvFo + qGo + Fog log(—p),
. _Fa=D' (=) Fo(=p)™ (39)
a JjJ! G+

Elsewhere, the result remains unchanged.

4. Thermal stresses: temperatures of #-dependence

The thermal stresses in the FGM cylinder that are induced by the temperature field (18) for
n=1,2,3,... are sought. First we treat the case of n = 1 separately. After that, the cases of n = 2,3, ... will
be treated in a unified manner.

4.1. Solution for n = 1

As an initial step to deal with the case of n = 1, consider a homogeneous cylinder that is affected by the
temperature field (Eq. (13))

T(r,0) = [Flr + %] cos 0, (40)

where F| and G are constants. Except for o, the temperature (40) does not bring about thermal stresses in
homogeneous cylinders (Boley and Weiner, 1960). Each sub-cylinder in the piecewise homogeneous cyl-
inder is free from o,, gy, and ¢,9. At the interfaces, however, displacement discontinuity generally occurs
due to different thermal expansions in different sub-cylinders. Traction systems at the interfaces are thus set
up to eliminate the discontinuity in displacements in both the » and the 0 directions. For n = 1, these
traction systems can be deduced from the following stress function:

¢(r,0) = Ar* cos 0 + Brlogrcos 0 + Crsin 0 +§ cos 0. (41)

It is known that displacements u, and u4 are derived from Blogrcos 6, and Crfsin 6 in Eq. (41) are multi-
valued. The elimination of the multi-valuedness necessitates
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Consider the continuity conditions of the stresses and displacements on any one of the interfaces, for
instance the innermost interface. Using Egs. (23), (40), (41)—(42), the continuity conditions can be written as

C= KQB, Ko (42)

u,(«Z)(rl;e) :u;{l)(rlae)ﬂ (43)
where 4@ (r,0) (a = 1 or 2) can be expressed as
. N ) B@ D@
uE )(,«1, 0) :{A( ) 240 }’% +4u(“> {[(1 + ko) — 1 + ko] logr; — 1 — o} +W
Fl@)y?
+ (1 +v)al? <Tl + G log r1> + U<“)} cos 0, (44)
and
u;? (r1,0) = uy (1, 0), (45)
where uﬁ,@ (r1,0) (a =1 or 2) can be expressed as
a aK+2 B@ D@
ME))(}"],H) :{A( )er +W{[1 — Ky — (1 + Ko)K] logrl -1 - Ko} +W
Fla);2 )
+ (14 v)a@ [ i G (logr +1) — U(”>] } sin 0. (46)

In Eqgs. (44) and (46), U") and U® are rigid-body displacements that have no effect on strains and stresses,
and they will be ignored in the further development. Furthermore,

@ (r1,0) = a\V(r,0), (47)
where @ (r,0) (a =1 or 2) can be expressed as
142 (@)  opla)
awmm=P“%+(+“w —2]“w7 (48)
I8 r
and
0,0 (r1,0) = 0, (r1, 0), (49)
where o-f,? (r1,0) (a =1 or 2) can be expressed as
B@  2pla)
O"(.Z)(}’]’H) = |:2A(a>l"1 + . - r3 :l sin 0. (50)
1 1

Eqgs. (47)—(50) clearly show that continuity conditions (47) and (49) can be satisfied only when B?® = B,
Further analysis of stress continuity at other interfaces confirms that all BY) in the piecewise homogeneous

cylinder must be a constant: BV = B® = ... = B = B, = constant. Consequently, Egs. (48) and (50)
reduce to
(2 (1
A@_QT:Am_Q;, (51)
r r

Eqgs. (43), (45), and (51) can be used to determine 4, D® and U® in terms of each others. Consider
Eq. (51) and the equation that is obtained by adding (43)—(45). These two equations do not contain U? and
UM, By applying the limiting condition, # — 0, to the two equations, we obtain
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dA(r) D(r) By (1+v)u(r)a(r) (1 [dG(r) dFi(r)
= — - - — gF
ar ad(r) + e ! tc r2+ T1x 2 T ar +4Gi(r) dr qFi(r) o,
dD(r) _ ,dd(r)
= 2
dr "Ta (52)
where
Ks s s(1 + 1)
= = =———". 53
€1 1+« ) 1+« a3 21 + 1) (53)
For the particular solution of Eq. (52), we propose that
A,(r) = A4°(r)e”, D,(r) = D°(r)r*e"", Bgp = 0. (54)

The substitution of Eq. (54) into (52) yields

d4° hoo h_
L0 )+ e () + {Tf+7‘+ho e h}
(55)
dDe°(r 4 hoo h_
=)+ (- 2)00+ {2k
where
ci=c—w, =c—w,
hoy=cs(qgo+& + /1), ho=cilqgg +28 —qf 1), ho=calqg +38 —qfo — fr),
hj:C4[qgj+2+(j+3)gj+3_Q.fj_(,j+1)f}+l]? j:1727"'a (56)
s — (1 + v)aokty
N 14+x
To find a particular solution, 4;(r) and D;(r), to Eq. (55), we suppose that
A;(r) Za—?—&—a—j—kg—kao—kalr—&—azrz—k---,
iy dsy ds d , (57)
Dp(l") :7+7+7+7+d0+d11’+d21’ + .-
It is confirmed that Eq. (55) is exactly satisfied by Eq. (57), provided that we take
cd_ . cia_s + cpd_; cla_s + cid_
0= 234’ ds=cid, a_zz—%, d_2:%7
ot cd o+ he
a_| = —(CTa,z + Czd,z + h,z), d,] = cid-2 Cg 2 2 y (58)

In Eq. (58),a_3,d 3,a_5,d »,a_1,and d_; are determined in terms of d_4, the value of which can be fixed by
the following equation:

cTa,] + C’zd,| + h,l =0. (59)

Eq. (589) is a linear algebraic equation for d_4, which can be exactly solved as

1
ayg = O, do = Z(cla_l +C;d_1 — 4d0 +h_1),
g = C’fajq +02(djT1 — 4d0 +hj> d — c1a;-1 +C;(dj,1 — 4d/ +h,) ] — 12

j ) j B 9 PRt I

J J

(60)
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With the use of Eq. (54), the particular solution to Eq. (52), 4,(r) and D,(r), can be obtained directly from
A°(r) and D°(r).

Finally, the thermal stresses in the FGM cylinder can be expressed, in terms of A(r) = 4,(r) + 4,(r),
D(r) = Dy(r) + D,(r) and By = By, + By,, where the homogeneous solutions 4,(r), D,(r), and By, are given
as follows:

o, = {2A(r) + (1 +2r0)By _ 2 3(r)} cos 0,
r r
= [6A(r)r + By + 2 3(”)} cosl), o,9= [ZA(r)r + B _2 3(’/)} sin 0, (61)
r r r r

Gi(r)

o, =v(o, + a9) = 2a(r)u(x)(1 +v) [F] (r)r+ .

:| ) O = 0¢9; = 0.
That solution (61) is exact can be confirmed in a similar manner to the confirmation for solution (37).

4.2. Solution for n=2,3,...

Now turn to the case of n = 2,3,... in Eq. (18). To begin, we consider a homogeneous cylinder that is
subjected to the temperature field

T(r,0) = {Fnr”—i—%} cosnf), n=273 ..., (62)

where F, and G, are constants. The temperature (62) does not bring about thermal stresses in the piecewise
homogeneous cylinder, except for g, (Boley and Weiner, 1960). As in the case of n = 1, however, traction
systems on the interfaces of the piecewise homogeneous cylinder are set up to eliminate the discontinuity in
displacements at the interfaces. These traction systems can be deduced from the following stress function:

¢(r,0) = (Ar’“r2 + iz +Cr + D) cos nf. (63)
rﬂ* rn

By using stress function (63) and (23), the continuity conditions that apply at all of the interfaces can be
written down. For instance, for the innermost interface we have

uE'Z)(rl ’ 9) = usl)(rl ) 9)) (64)

where 4@ (r,0) (a = 1 or 2) can be expressed as

—-n—1 K+n—1 nri! n
@ (p ) =d g2 " n+l  gla) _co™ | pl
u, (”1; ) { 2u(2) o+ 2'11((1),,11—1 2,u(”> + zu(‘,),,YH
F(a)rn+] G(a)
1 (@) L — 0 65
+(1+v) < P R P cos n0, (65)
and

uy (1, 0) = " (1, 0), (66)

where u? (r1,0) (@ =1 or 2) can be expressed as
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n—1
(@) Jyortntl oy pon—k—1 g6 @_ "
uy’ (r1,0) {A 2@ r B NErE + 2@ +D 2
F(a)rn+1 G(a)
1 @ L in n6 67
+ 14V <n—|—1 Jr(n—l)r’f*1 s, (67)
and

GSﬂZ) (rla 6) = Gfﬂl)(rla 9)5 (68)

where ¢\ (r1,0) (a =1 or 2) can be expressed as

1— 2 1
d“(r,0) = |42 —n)(n+ 1)/ + BY % + C9n(1 = n)r'=* — D@ % cosnd,
(69)

and

Gif;)(rl, 0) = Gi}))(rla 0), (70)
where 05?,)(1”1, 0) (a =1 or 2) can be expressed as

p w o  n(l—mn) . o B+ ]
050)(;”1, 0) = |n(n+ )4 + ( . )B( Vb n(n— D)ri2C@ — (r;’” )D< )| sin n0. (71)

Through the limiting procedure # — 0, Egs. (64), (66), (68), and (70) become a system of differential
equations as

P=Cv+H, (72)
where
p_ [d40) dB() dc() dp(r)]’
dr dr dr dr ’
—C11 C12 C13 Cla i
2n

Cy1 Cx» — T €23 C24
C= 2 ,

C31 C3 €33 —— C34

r
2n+2
C41 Ca C43 C44 — ,




2368 K M. Liew et al. | International Journal of Solids and Structures 40 (2003) 2355-2380

in which
i SK (I =n)s 0 ns ]
1 +x I +x I+x
(n+1)s sk 2n ns
- — - 0
c 1+« l+x r 1+«
T+ DA =x)s (= 14K)s s 2 (s
n(1+«) n(1+x) l+x r 1+«
(m*—1+x)s (1—=n)(x—1)s (I—=mn)s s 2n+2
n(l + k) n(l + k) l+x 14k r
[ EF EG Ef,- G E(gra. 1"
H=1-050 aon 2V F one—e _Z{1+nF+rG} ) (73)
~  2(1+v) ~ dr(r)  ~ dG(r)
= = F _— = .
E=T Ar)u(r), F=qF(r)+—2=, G=qGr)+—

To facilitate the solution of the simultaneous differential equations (72), we put
A(r) = A°(r)e", B(r) = B°(r)r"e", C(r) = C°(r)i*e", D(r) =D°(r)r"?e", w=gq+s. (74)
To recast Egs. (72) into the following form:

P°=Cv +H", (75)
where
po_ [d4°() dB() dCo(r) dD°(n)]]
dr dr dr dr ’
Kt i i3 Clis
Gy Cp— o €3 Co4
C* = * * * 2 * ?
€31 C3 C33 — - C3q
* * * * 2n + 2
| Ca1 Ca2 C43 Caq — ]

v=[40) B(r) C(r) D()],
H° = [H(r) H;(r) H3(r) H(r)]'
in which
C*(ivj):C(ivj)7 i7£jv C*(i7j):C(l.7j)_W7 i=j,

FF EFG B (.. & Bo((F -
H = | °F - 2
(n+1) r(n—1) nr? {r (n— 1)r2n-2 } nrnt2 { 1+n +r6
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Using Egs. (16) and (17), H; (r), j=1,2,3,4, can be expanded into the series form
H° =[6;(r) 63(r) 63(r) O3],

where
hy—on  No—(on— hy_> hy_
@Z(I"): l;znz %—'——’_ 7:22+ r1+ha,0+ha,lr+hm42r2+"'a
E° ,
hl/:_(n+l)[qf;+(]+1)f}+l}a f72n:07
hyj = ) 98120 + (U + 20+ 1)gj10011], (77)
1
hsj=—- [haj + (n+ 1Ayl

1
haj =~ [hj— (n = 1)hy]

in which j = -2n,—(2n—-1),...,-2,—-1,0,1,2,...
To find the particular solution for Egs. (75), we propose that

o _A-(@n-1) | A-(2n-2) an, a_
Ap(l’)— 2] 2n—2 —|—~~~—|—r—2+7+a0—|—a1r—|—~-,
o b_ n b_ 2n—1 b_ 2n—2 b_ b_
T I8 T r r (78)
orn _ C=(n-1) | C—(2n-2) €2  C-1
CP(V)— 2n1 2n—2 +--~+7+7+co—|—clr+---,
o d_on-1y  d_@n-2) d, d,
Dp(}"): }"2"71 72"72 +"‘+7+7+dg+d17’+"’

By substituting Eq. (78) into (75) and the equating of the coefficients of like terms on both sides of the
resulting equations, the following formulas are obtained:

_ CTQb—Zn + h14—2n

a_op-1y = 1 v bty = b gy A+ oy,
= Ciob 2y + h3 oy Aoy = Canb oy 4 ha _oy
~n=1) m—3 0 e 3 ’

8y = Cua—n—jin) + Cpboujr) €3¢ n-jr) F Cud-@nmjrt) + o),

= = ) ) (79)
P b =2 e R
o) = =5, bremy =T e = o5 s deee) S
Wop = cpap+ byt s p+cudp+ hoyp,
NS JF BRI £ I _ P
-2 2 ) -2 o — 27 -2 n )

where j=2,3,...,2n— 3.
In Eq. (79), the coefficients a;, b;, c¢;, and d; are expressed exactly in terms of a constant b_,,, the exact
value of which can be determined by the following equation:

c;‘la_3 + C;zb_3 + C§3C_3 + C§4d_3 + h37_3 =0. (80)
Eq. (80) is a linear algebraic equation for b_,,, which can be exactly solved as
Y12 Vs
a=-Y b= : =Y d = : 81
a_y 1,25 1 m—1’ C1 325 1 1’ ( )
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¥ Y5 Y4,

ap =0, b0=$7 Co = 7 d0:2n+2'

(82)

The coefficients that are expressed in Eqgs. (81) and (82) are given in terms of a constant c¢_», the exact value
of which can be determined by the following equation:

cha_y + b+ e +eydoy + b2 =0. (83)
Eq. (83) is a linear algebraic equation for c_,, which can be solved exactly:

Y Yy Vs Yy

a I - .9 .
J Jj T 2n4j 24

(84)

where j =1,2.3,...

The particular solution to Eq. (72), 4,(r), etc., can be obtained from solution (78) using Eq. (74). The
thermal stresses in the FGM cylinder can be expressed, in terms of A(r) =A4,(r)+4,(r),
B(r) = By(r) + B,(r), C(r) = Ci(r) + C,(r), and D(r) = Dy(r) + D,(r), as follows:

0, = {(n + D)2 =n)A(r)r" + (- n)(r}zj— 2)B(r) +n(l —n)C(r)yr? — %} cos 6,
01 = [n(n TRIVIE i ) -(G) _r’:)B Y T )2 ;’QD (’)] sin 0, (85)

G.()

) Oz = 0¢; = 0.
r

o, =v(o, + oyg) — 2a(r)u(r)(1 +v) [F,,(r)r +

That solution (85) is exact can be confirmed in a manner that is similar to the confirmation for solution (37).

Temperatures (40) and (62) are even functions in 0, and induce displacements and stresses that are

symmetric to the polar axis # = 0. Another type of temperature distribution, when cos 6 in (40) and (62) is

replaced with sin 0, induces displacements and stresses that are antisymmetric with respect to the polar axis.

Exact expressions for these displacements and stresses can be obtained by a procedure that is quite similar
to that which is used for cos 0, and the details are therefore omitted.

5. Results and discussion
5.1. Temperature distribution brings about no thermal stresses

In the axisymmetric case, Eq. (12) shows that T(r) = T; = constant is a temperature solution for the
FGM cylinder. Unlike homogeneous materials that can expand freely in a constant temperature field, the
expansion of FGM materials is constrained, and large values of ¢, and gy can be generated, as shown in
Fig. 1. The thermal stresses o, and o, vanish only when ¢ = 0. However, for ¢ = 0, a(r) = oy = constant
and the FGM cylinder is homogeneous with respect to thermal expansion.

When the temperature is 0-dependent, thermal stresses a,, 6,4, and a4 occur in the FGM cylinder even
when ¢ = 0, as shown in Fig. 2. This is because temperature solution (18) is no longer a harmonic function
of the homogeneous temperature solution, due to the r-dependence of the thermal conductivity A(r). Only
when ¢g and p are both zero can the FGM cylinder be without thermal stresses a,, 6,9, and gy, i.e. only when
the FGM cylinder is de facto homogeneous with respect to both thermal expansion and thermal con-
ductance.

An important problem in thermoelasticity is that the temperature field that does not induce thermal
stresses (Boley and Weiner, 1960). It follows from the above analysis that for a FGM cylinder the only
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Fig. 1. Thermal stresses induced by uniform temperature (¢ = 0,0.25).
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Fig. 2. Thermal stresses induced by 6-dependent temperature (n = 2, g = 0).
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Fig. 3. A cross-section of a FGM hollow circular cylinder.

temperature field that induces no o,, 6,9, or gy is the trivial case, T'(r,0) = 0. This conclusion can be
generalized to other FGM configurations by the following simple reasoning.

In Fig. 3 a cross-section of a FGM hollow circular cylinder is shown. In the stress-free state, the cross-
section can actually be looked upon as consisting of two cross-sections: one belonging to a cylindrical body
with cross-section C, and the other to the hollow circular cylinder that is perforated by the cylindrical body
bounded by C. As T(r,0) = 0 is the unique temperature distribution that causes no a,, g,9, or oy in the
FGM cylinder, this should be equally true for the two cylindrical bodies that are indicated above. Because
contour C can be of any shape and dimension, it follows that for any plane configuration of FGM,
T(r,0) = 0 is the unique temperature distribution that does not cause stresses o,, 6,9, Or 7y.

5.2. Numerical computation of thermal stresses

The numerical results that are determined from the theoretical solutions that were developed in the
foregoing sections are discussed in this sub-section. Plane strain, v=1/3,p=1/2,s=1/2, rp =1, ry =2
and free traction boundary conditions on the inner and outer boundaries are assumed in all of the nu-
merical results.

For uniform temperature 7y, thermal stresses ¢, and gy are shown in Fig. 1 for ¢ = 0 and 0.25, and in
Figs. 4 and 5 for ¢ = 0.5 and 1 respectively. The result for ¢ = 0 demonstrates that thermal stresses are set
up in the FGM cylinder even when the material is homogeneous with respect to thermal expansion, i.e.
when a(r) = oy = constant. As expected, a larger ¢ brings about larger values of thermal stresses.

For temperatures with 0-dependence, under the following temperature boundary conditions:

r=ry, T =0, r=ry, T =Tycosn0, (86)

a,, 0,9, and oy are depicted in Figs. 6-8 (n =2, ¢ = 0.25,0.5,1), Figs. 9-11 (n =4, ¢ = 0.25,0.5,1) and
Figs. 12-14 (n = 8, ¢ = 0.25,0.5, 1). Fig. 2 demonstrates the thermal stresses in the FGM cylinder for n = 2
and g = 0. In Figs. 2 and 6-14, the values of g, and gy are given for 0 = 0, and those of 4,y for 6 = nt/2n.

From the numerical results one sees that g, is the predominant stress, with its maxima in magni-
tude exceeding those of g, and a,4 in all cases. Thermal expansion in the FGM cylinder is restrained by the
non-homogeneous properties A(r) and o(r) in addition to temperature distributions. A small change in
the thermal expansion index ¢ will bring about large changes in the magnitude of thermal stresses or the
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Fig. 12. Thermal stresses induced by 0-dependent temperature (n = 8, g = 0.25).

reversal of direction, as indicated in Figs. 1, 2, 4 and 5. It follows that thermal stresses in the FGM cylinder
are affected by more factors than are its homogeneous counterparts, and it is more complicated to evaluate.

The theoretical solutions are well suited to numerical manipulation, and provide accurate and reliable
numerical results in the figures when 2040 terms are included in the series.

5.3. General properties of thermal stresses

Some general properties can be drawn for thermal stresses in the FGM cylinder. The usefulness of a
particular numerical result can be extended by using these general properties.

Under uniform temperature, the thermal stresses are dependent on, in addition to the variable r, the
parameters Tp, %, Lo, ¢, S, 7o, and ry. For a fixed set of the parameters, the corresponding radial stress is
denoted by a,(r; Ty, 0, Uy, 4, S, Fo, v)- A simple examination of the solution shows that o, is proportional to
Ty. This fact can more precisely be expressed by the following formula:

Gr(l";mTo,Oﬁo,ﬂo,q,s,}"o,i’]\/) = ma,(r; To,OC(),/JO,q,S,I"(),VN), (87)
where m is a real number. Likewise, for m to be positive, we have

6"(7; TovmaOaMO’qasaroarN) = mal”(r; T07a07H07q7s7r07rN)7

Gr(l"; T07 aOam:umquarOarN) = ma,.(r; TOa 0607/10,q,S,V0,}"N), (88)

r ro ry
(% Ea T(]ao(()mummqvavE?E = Gr‘(r; TO?“O)#()vq»SerarN)'
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Fig. 13. Thermal stresses induced by 0-dependent temperature (n = 8, ¢ = 0.5).

The last formula in Eq. (88) indicates that ¢, in a FGM cylinder at point » equals that in another FGM
cylinder, which is 1/m times larger or smaller in geometry and m times in g and s, at the geometrically
similar point r/m.
When the temperature is 0-dependent, o, depends on the parameters Ty, o, t, 4, S, Fo, Fn, 1, and p. We
then have the following general properties:
O-f(r;mTOa Go, Moy g5 S, ro,rN,n,p) = m(r,(r; T07a07,u07qua roervnvp)v (89)

where m is real, and for m to be positive
O—r(r; TOamOC07/’tO7q7ser7rN7n7p) = mU,.(r; T07OCOaMO7Q7S7 r07rN7n7p)7
O-r(r; TOa aOamM0>q>Sar07rN>n>p> = mo—r(r; T07a07:u07q757 7"(),7"]\/,71,]9)7 (90)

r ro ry
O %;To,oco,,uo,mq,ms,%,;,n,mp :O-V(r;Toaaoa,u()aqasarmrNanvp)'

Egs. (87)—-(90) remain true when o, is replaced by o,y or gy. These analytic observations have been con-
firmed by numerical verification.

5.4. Extension of the solutions

The thermal stress solutions are obtained for the steady-state temperature distributions of series forms
(12) and (18). By replacing the coefficients in the series with suitable constants, the resultant series can
represent the transient temperature distributions at a certain time ¢. The developed solutions can then be
used to evaluate the transient thermal stresses in FGM cylinders.
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Fig. 14. Thermal stresses induced by 0-dependent temperature (n =8, g = 1).

The development is based on a plane strain condition. The result for generalized plane stress can be
obtained by letting k = (3 — v)/(1 4 v) and introducing a few other amendments that are well known in the
theory of elasticity.

6. Conclusions

This article presents an analysis of the temperature and thermal stresses in a FGM hollow circular
cylinder. It also provides a new solution method for thermal stresses in homogeneous cylinders as a special
case. By using the solutions, particular digital values can be obtained, and systematic parameter study can
be carried out with simple numerical manipulations. The case of 0-dependence, which appears to be un-
touched in the existing literature, is covered in the solutions. The solutions are obtained by a novel ap-
proach: the matching of the homogeneous solutions with ingenuous propositions for the solution form in
the semi-inverse method. These results will be useful for future reference.
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