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Abstract

This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded

material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous

hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoelasticity.

Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in

the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of

zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful

attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its

homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Intense heat can be generated in structures during normal operation, under special conditions in

emergencies, or while they are being burnt down in disasters. As an external effect on structures, heat can be

as significant as directly applied forces, and can cause damage through excessive thermal stresses. Inves-
tigations into thermal stresses in elastic bodies are numerous, and the majority have been recorded in

textbooks and monographs (Boley and Weiner, 1960; Barber, 1992). One of the recent focuses in the in-

vestigation of thermal stresses has been the development of new materials that can adapt to high tem-

perature environments and tenaciously endure serious thermal stresses (Praveen and Reddy, 1998; Loy

et al., 1999; Ng et al., 2000; Reddy, 2000; He et al., 2001).
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Functionally graded materials (FGMs) can be used to alleviate the harmful effects of heat on struc-

tures. FGMs are fabricated by continuously changing the volume fraction of two basic materials, usually

ceramic and metal, in one direction. The FGM materials that are thus formed exhibit isotropic yet non-

homogeneous thermal and mechanical properties. In the theory of elasticity, FGM materials are mostly
treated as non-homogeneous materials with material constants that vary continuously along one spatial

direction. Noda (1991) presented an extensive review of thermoelastic and thermo-inelastic problems.

A number of studies have dealt with thermal stresses in the basic structural components of FGMs.

Shen (2001a,b, 2002a,b) has studied the thermal postbuckling of functionally graded plates and shells.

Zimmerman and Lutz (1999) presented solutions to the problem of the uniform heating of a circular

cylinder by the Frobenius series method. Using a perturbation approach, Obata and Noda (1994) inves-

tigated the thermal stresses in an FGM hollow sphere and in a hollow circular cylinder. Ootao and Tan-

igawa (1999) conducted an approximate analysis of three-dimensional thermal stresses in an FGM
rectangular plate. They also discussed the optimization of the material composition of FGM hollow cir-

cular cylinders under thermal loading, based on approximate solutions of temperatures and thermal stresses

(Ootao et al., 1999). Liew et al. (2001) presented an investigation of the active control of FGM plates that

were subjected to a temperature gradient by the finite element method that was based on the first-order

shear deformation theory. With the use of the finite element method, Reddy and Chin (1988) considered

thermomechanic analysis, including the coupling effect, for FGM plates and cylinders. Tanaka et al. (1993)

designed FGM property profiles using a sensitivity and optimization method that was based on the re-

duction of thermal stresses.
Cylindrical shells are often used as basic structural components in engineering applications. Much re-

search has been conducted on isotropic or laminated composite plates and shells (Liew and Lim, 1995;

Karunasena et al., 1995; Liew and Teo, 1998). To our knowledge, only a limited amount of work has been

carried out on FGM shells. Hence, this article will develop an analytical model to deal with FGM hollow

circular cylinders that are subject to the action of an arbitrary steady state or transient temperature field.

Solutions are derived for the non-homogeneous thermoelasticity of steady-state temperature distributions,

thermal stresses, and thermal displacements in an FGM cylinder. Numerical results and some important

conclusions regarding the general properties for thermal stresses in FGM cylinders are presented and ex-
amined. These results can serve as benchmarks for future related research.

To develop the solution, the FGM cylinder is first sectioned into a number of sub-cylinders, and each of

the sub-sections is approximated as homogeneous. Displacements and stresses within the homogeneous

sub-cylinders are obtainable from the homogeneous solutions, from which the continuity conditions of the

displacements and stresses at the interfaces can be formed. When the number of the sub-cylinders becomes

infinitely large, they constitute a FGM cylinder, and the continuity conditions at the interfaces become a

system of ordinary differential equations, which are solved analytically or numerically. Solutions for the

FGM cylinder are therefore obtained through matching an infinitely large number of homogeneous so-
lutions, with no recourse to the basic equations of non-homogeneous thermoelasticity.

2. Mathematical formulation

Steady-state temperature solutions are considered and determined for a hollow circular cylinder of FGM

with an inner radius r0, outer radius rN , and thermal conductivity kðrÞ ¼ k0epr, k0 and p being constants. A
cylindrical coordinate system ðr; h; zÞ is established for reference, with the z-axis lying on the axis of the
cylinder. As we seek a thermal stress solution of the FGM cylinder in the plane strain condition, the

temperature is independent of z.
To begin, we consider the temperature of axial symmetry. For the special case of p ¼ 0, i.e. when the

material is homogeneous, the temperature solution is
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T ðrÞ ¼ F þ G log r; ð1Þ
where F and G are constants, depending on the boundary conditions of the problem.
To obtain the solution for the FGM cylinder, we proceed as follows:

vii(i) Section the FGM cylinder by cylindrical surfaces r ¼ r1; r2; . . . ; rn�1, where r1 ¼ r0 þ h, r2 ¼ r1 þ h ¼
r0 þ 2h, etc., to divide the whole cylinder into n sub-cylinders of uniform thickness h ¼ ðrN � r0Þ=n.

vi(ii) The innermost sub-cylinder is numbered as sub-cylinder 1, the sub-cylinder next to it as sub-cylinder

2, and so on.

v(iii) Assume that the non-homogeneous sub-cylinders are homogeneous, with a constant conductivity

k0 expðprj�1Þ, rj�1 ¼ r0 þ ðj� 1Þh, for the jth sub-cylinder.
ii(iv) The solution in Eq. (1) now applies to each of the sub-cylinders, which have been assumed to be ap-

proximately homogeneous. For the jth sub-cylinder, the temperature is denoted as

T ðjÞðrÞ ¼ F ðjÞ þ GðjÞ log rj�1; ð2Þ
where the superscript indicates that the affixed quantity belongs to the jth sub-cylinder.

iii(v) For a large n, the thickness h is small, and the difference between F ð1Þ and F ð2Þ should be insignificant.

The combination of solutions (2), j ¼ 1; 2; . . . ;N , should be a good approximation of the solution of
the FGM cylinder, provided that the constants F ð1Þ;Gð1Þ; F ð2Þ;Gð2Þ; . . . are determined first by the con-
tinuity conditions of temperatures and heat flux at the interfaces of the sub-cylinders, and finally by

the boundary conditions of the FGM cylinder.

ii(vi) When h! 0, the difference between F ð1Þ and F ð2Þ becomes infinitesimally small, and the two can be

written in terms of a single function F ðrÞ:

F ð1Þ ¼ F ðr0Þ; F ð2Þ ¼ F ðr1Þ � F ðr0Þ þ h
dF ðrÞ
dr

� �
r¼r0

: ð3Þ

Similar formulas hold for Gð1Þ and Gð2Þ when another function, GðrÞ, is introduced, and for all other
F ðiÞs and GðiÞs.

i(vii) All continuity conditions at the interfaces, in the form of 2ðn� 1Þ simultaneous algebraic equations,
reduce to two simultaneous differential equations, with F ðrÞ and GðrÞ as unknowns.

(viii) By solving the two simultaneous differential equations for F ðrÞ and GðrÞ, the exact solution for the
FGM cylinder is obtained as

T ðrÞ ¼ F ðrÞ þ GðrÞ log r: ð4Þ

In the following, all of the temperature and thermal stress solutions for the FGM cylinder are determined in

accordance with the above solution scheme.

The continuity conditions of the temperatures and heat flux at r ¼ r1, which is the interface of the two
innermost sub-cylinders, take the following form:

F ð2Þ þ Gð2Þ log r1 ¼ F ð1Þ þ Gð1Þ log r1;

kð2Þ G
ð2Þ

r1
¼ kð1Þ G

ð1Þ

r1
:

ð5Þ

Eq. (5) can be rewritten as

F ð2Þ ¼ F ð1Þ þ 1

 
� kð1Þ

kð2Þ

!
Gð1Þ log r1;

Gð2Þ ¼ kð1Þ

kð2Þ G
ð1Þ:

ð6Þ
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For small h, Eq. (6), and similar equations for F ð3Þ, Gð3Þ, etc., provide an approximate solution for the

FGM cylinder. To develop an exact solution we consider the case of h� 1, for which the following for-

mulas hold:

F ð1Þ ¼ F ðr0Þ; Gð1Þ ¼ Gðr0Þ;

F ð2Þ ¼ F ðr1Þ � F ðr0Þ þ
dF ðrÞ
dr

� �
r¼r0
h; Gð2Þ ¼ Gðr1Þ � Gðr0Þ þ

dGðrÞ
dr

� �
r¼r0
h;

kð1Þ

kð2Þ ¼ e�ph � 1� ph;

r1 ¼ r0 þ h ¼ r0 1

�
þ h
r0

�
;

1

r1
� 1

r0
1

�
� h
r0

�
;

ð7Þ

where F ðrÞ and GðrÞ are two sufficiently smooth functions. The substitution of Eq. (7) into Eq. (6) and the
application of h! 0 to the resultant equations leads to the following two simultaneous differential

equations:

dF ðrÞ
dr

¼ pGðrÞ log r; dGðrÞ
dr

¼ �pGðrÞ: ð8Þ

The same differential equations are obtained when we consider the limiting case of h! 0 for the con-

tinuity conditions at other interfaces. The solution for GðrÞ in Eq. (8) is easily obtainable, and that for F ðrÞ
can be obtained by integration by parts. The result is as follows:

F ðrÞ ¼
G0 � F0E1ðprÞ � F0e�pr log r; p > 0;
G0; p ¼ 0;
G0 þ F0Eið�prÞ � F0e�pr log r; p < 0;

8<:
and

GðrÞ ¼
F0e�pr; p > 0;
F0; p ¼ 0;
F0e�pr; p < 0;

8<: ð9Þ

where

E1ðprÞ ¼
Z 1

pr

e�t

t
dt; Eið�prÞ ¼

Z 1

pr

e�t

t
dt ð10Þ

are exponential integrals, and have the following series expansions (Abramovitz and Stegun, 1964):

E1ðprÞ ¼ �c � logðprÞ �
X1
1

ð�1ÞnðprÞn

nn!
;

Eið�prÞ ¼ c þ logð�prÞ þ
X1
1

ð�1Þnð�prÞn

nn!
;

ð11Þ

with c ¼ 0:5772156649 . . . being Euler�s constant. F0 and G0 are arbitrary constants that depend on the
boundary conditions of the problem.

The substitution of Eq. (9) into Eq. (4) yields the final temperature solution as follows:

T ðrÞ ¼
G0 � F0E1ðprÞ; p > 0;
G0 þ F0 log r; p ¼ 0;
G0 þ F0Eið�prÞ; p < 0:

8<: ð12Þ
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The fact that Eq. (12) is the exact temperature solution for the FGM cylinder can be verified by directly

substituting it into the equation of heat conduction for non-homogeneous media (Tanaka et al., 1993). The

two arbitrary constants that are contained in Eq. (12), i.e. F0 and G0, can be adjusted to satisfy an arbitrary
axisymmetric distribution of temperature or heat flux in the boundary conditions for the FGM cylinder.
Turning to the solution for temperatures of h-dependence, for the special case of p ¼ 0, i.e. for a ho-

mogeneous cylinder, the following solution can be obtained:

T ðr; hÞ ¼ Fnrn
�

þ Gn
rn

�
cos nh; n ¼ 1; 2; 3; . . . ; ð13Þ

where Fn and Gn are constants.
The solution scheme that is used above for obtaining the axisymmetric temperature distribution is again

used for obtaining the h-dependent temperature distribution. The continuity conditions of the temperatures
and heat flux at r ¼ r1, which is the interface of the two innermost sub-cylinders, can be written as

F ð2Þ
n ¼ 1

2
1

 "
þ kð1Þ

kð2Þ

!
F ð1Þ
n þ 1

 
� kð1Þ

kð2Þ

!
Gð1Þ
n

r2n1

#
;

Gð2Þ
n ¼ 1

2
1

 "
� kð1Þ

kð2Þ

!
F ð1Þ
n r2n1 þ 1

 
þ kð1Þ

kð2Þ

!
Gð2Þ
n

#
:

ð14Þ

After applying the limiting process to Eq. (14), it reduces to

dFnðrÞ
dr

¼ � p
2
FnðrÞ
�

� GnðrÞ
r2n

�
;
dGnðrÞ
dr

¼ p
2
½FnðrÞr2n � GnðrÞ�: ð15Þ

Eq. (15) is solved by the semi-inverse method (Barber, 1992). In doing so, a basic form of the solution must

first be devised and proposed. Let us suppose that

FnðrÞ ¼
f�ð2n�1Þ

r2n�1
þ f�ð2n�2Þ

r2n�2
þ � � � þ f�2

r2
þ f�1

r
þ f0 þ f1r þ f2r2 þ � � � ;

GnðrÞ ¼ g0 þ g1r þ g2r2 þ � � �
ð16Þ

The unknown constants f�ð2n�1Þ; f�ð2n�2Þ; . . . ; f�1; f0; . . . and g0; g1; . . . in Eq. (16) should be fixed by first
substituting Eq. (16) into Eq. (15), and then comparing and equating the coefficients of all like terms on

both sides of the resultant equations. This yields

f�ð2n�1Þ ¼ � pg0
2ð2n� 1Þ ; g1 ¼ � pg0

2
;

f�ð2n�jÞ ¼
p½gj�1 � f�ð2n�jþ1Þ�

2ðj� 2nÞ ; j ¼ 2; 3; . . . ; 2n� 1;

fj ¼
p g2nþj�1 � fj�1
� �

2j
; j ¼ 1; 2; 3; . . . ;

gj ¼
p f�ð2n�jþ1Þ � gj�1
� �

2j
; j ¼ 2; 3; . . . ;

ð17Þ

where f0 and g0 are two arbitrary constants that depend on the boundary conditions of the problem. The
final solution for the FGM cylinder is

T ðr; hÞ ¼ FnðrÞrn
�

þ GnðrÞ
rn

�
cos nh: ð18Þ
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The fact that solution (18) is exact can be confirmed by substituting it into the equation of heat conduction

in non-homogeneous media (Tanaka et al., 1993).

Another solution is obtained when cos nh in Eqs. (13) and (18) is substituted with sin nh. When p ¼ 0, all

of the coefficients in Eq. (16) become zero, except f0 and g0, which reduces solution (18) to homogeneous
solution (13).

Solution (18) with factor cos nh and its associate with factor sin nh, n ¼ 1; 2; . . . , make up a complete
system of solutions for the FGM cylinder, and can be used to solve any particular type of boundary value

problem of h-dependence.

3. Thermal stresses: axisymmetric temperature

The thermal stresses in the FGM hollow circular cylinder that are caused by an axisymmetric temper-
ature distribution are to be determined. Poisson�s ratio of the cylinder is constant, the coefficient of linear
thermal expansion is assumed to be a ¼ a0 expðqrÞ, and the shear modulus is taken as l ¼ l0 expðsrÞ; where
a0, q, l0, and s are material constants. It is assumed that the cylinder is in a plane strain condition and its
two circular cylindrical surfaces are traction free.

As before, the FGM cylinder is initially approximated as a piecewise homogeneous cylinder. For the jth
sub-cylinder, the temperature is given by Eq. (2):

T ðjÞðrÞ ¼ F ðjÞ þ GðjÞ log rj�1 ¼ constant: ð19Þ

Due to the uniform temperature (19), the radial stress and displacement that are induced in the jth sub-
cylinder by the temperature alone, which is denoted with a superscript asterisk, take the form of

r
ðjÞ
r ðrÞ ¼ 0; u
ðjÞr ðrÞ ¼ ð1þ mÞaðjÞT ðjÞr: ð20Þ

Similarly, we have

r
ðjþ1Þ
r ðrÞ ¼ 0; u
ðjþ1Þr ðrÞ ¼ ð1þ mÞaðjþ1ÞT ðjþ1Þr: ð21Þ

Eqs. (20) and (21) show that the stresses are continuous at the interface but the displacements are not.

Consequently, additional traction systems must be set up in the sub-cylinders to eliminate the discontinuity

in the radial displacements. Actually, the traction systems are thermal stresses that occur in the piecewise

homogeneous cylinder. In the axisymmetric state, they can be derived from the stress function /ðrÞ as

/ðrÞ ¼ Ar2 þ B log r: ð22Þ

With the use of the following general formulas for plane strain:

rr ¼
1

r
o/
or

þ 1

r2
o2/

oh2
; rh ¼

o2/
or2

; rrh ¼ � o

or
1

r
o/
oh

� �
; rz ¼ mðrr þ rhÞ � aET ;

er ¼
our
or

¼ rr
E
� mðrh þ rzÞ

E
þ aT ; eh ¼

1

r
ouh

oh
þ ur
r
¼ rr
E
� mðrh þ rzÞ

E
þ aT ;

erh ¼
1

2

1

r
our
oh

�
þ ouh

or
� uh

r

�
¼ rrh
2l

;

ð23Þ

(all components of stress and strain that do not appear in Eq. (23) vanish in the present problem) and by

combining the effects of the traction systems and the temperature, the conditions for the continuity of
displacements and stresses at the interface can be written as
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uðjÞr ðrjÞ ¼ uðjþ1Þr ðrjÞ; rðjÞ
r ðrjÞ ¼ rðjþ1Þ

r ðrjÞ; ð24Þ

where

uðjÞr ðrjÞ ¼ AðjÞ j � 1
2lðjÞ rj � B

ðjÞ 1

2lðjÞrj
þ u
ðjÞr ðrjÞ; rðjÞ

r ðrjÞ ¼ 2AðjÞ þ B
ðjÞ

r2j
;

uðjþ1Þr ðrjÞ ¼ Aðjþ1Þ j � 1
2lðjþ1Þ rj � B

ðjþ1Þ 1

2lðjþ1Þrj
þ u
ðjþ1Þr ðrjÞ;

rðjþ1Þ
r ðrjÞ ¼ 2Aðjþ1Þ þ B

ðjþ1Þ

r2jþ1
;

ð25Þ

j ¼ 3–4m for plane strain.
By employing Eqs. (8) and (9) via mathematical manipulations, the difference of the displacements u
ð1Þr

and u
ð2Þr for p > 0 can be expressed as

u
ð1Þr � u
ð2Þr ¼ �ð1þ mÞfaðr1ÞGðr1Þ � F0qaðr1Þr1E1ðpr1Þ þ qG0r1aðr1Þghþ � � � ; ð26Þ

where F0, G0 and GðrÞ are given in Eqs. (8) and (9). The case of p < 0 will be considered later.

Using Eqs. (25) and (26) in the limiting process as h! 0, Eq. (24) is transformed into the following set of

differential equations:

dAðrÞ
dr

¼ d11AðrÞ þ
d12
r2
BðrÞ þ f ðrÞ;

dBðrÞ
dr

¼ d21r2AðrÞ þ d22BðrÞ � 2r2f ðrÞ;
ð27Þ

where

d11 ¼
ðj � 1Þs
1þ j

; d12 ¼ � s
1þ j

; d21 ¼ �2d11;; d22 ¼ �2d12;

f ðrÞ ¼ �2 1þ m
1þ j

a0l0e
wr F0e�pr

r

�
� F0qE1ðprÞ þ qG0

�
; w ¼ qþ s:

ð28Þ

To facilitate the solution of Eq. (27), we write

AðrÞ ¼ A
ðrÞ expðwrÞ; BðrÞ ¼ B
ðrÞ expðwrÞ ð29Þ

and substitute Eq. (29) into (27) to obtainePP ¼ eDD~vvþ eHH; ð30Þ

where

ePP ¼ dA
ðrÞ
dr

dB
ðrÞ
dr

� �T

eDD ¼

24 d
11
d
12
r2

r2d
12 d
22

35; ~vv ¼ ½A
ðrÞB
ðrÞ�T; eHH ¼ ½HðrÞ � 2r2HðrÞ�T
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in which

d
11 ¼ d11 � w; d
22 ¼ d22 � w; d
12 ¼ d12; d
21 ¼ d21;

HðrÞ ¼ K0 cL logðrÞ
n

þ c�1
r

þ c0 þ c1r þ c2r2 þ � � �
o
; K0 ¼ �2 1þ m

1þ j
a0l0;

cL ¼ F0q; c�1 ¼ F0; c0 ¼ �pF0 þ qcF0 þ qG0 þ F0q logðpÞ;

cj ¼
F0qð�1Þjpj

jj!
þ F0ð�pÞ

jþ1

ðjþ 1Þ! for j ¼ 1; 2; . . .

ð31Þ

The complete solution of Eq. (30) consists of two linearly independent homogeneous solutions and a

particular solution (Tenenbaum and Pollard, 1963). We seek the particular solution by splitting it into two

parts:

A

pðrÞ ¼ A


p1ðrÞ þ A

p2ðrÞ; B


pðrÞ ¼ B

p1ðrÞ þ B


p2ðrÞ: ð32Þ

The first part, A

p1ðrÞ and B


p1ðrÞ, is used to account for the logarithmic term in Eq. (30) that is contained in

HðrÞ, while the second part, A

p2ðrÞ and B


p2ðrÞ, accounts for the remaining terms of HðrÞ. For the first part
we propose

A

p1ðrÞ ¼ u1r þ u2r2 þ � � � þ ða1r þ a2r2 þ � � �Þ logðrÞ;
B

p1ðrÞ ¼ r2fv1r þ v2r2 þ � � � þ ðb1r þ b2r2 þ � � �Þ logðrÞg:

ð33Þ

Eq. (33) exactly satisfies Eq. (30), provided that we take

a1 ¼ K0cL; u1 ¼ �K0cL; b1 ¼ � 2
3
K0cL; v1 ¼

2

9
K0cL;

aj ¼
1

j
ðd
11aj�1 þ d
12bj�1Þ; uj ¼

1

j
ðd
11uj�1 þ d
12vj�1 � ajÞ;

bj ¼
1

jþ 2 ðd


21aj�1 þ d
22bj�1Þ; vj ¼

1

jþ 2 ðd


21uj�1 þ d
22vj�1 � bjÞ;

ð34Þ

where j ¼ 2; 3; . . .
For the second part of the particular solution it is supposed that

A

p2ðrÞ ¼

a�1
r

þ a0 þ a1r þ a2r2 þ � � � ; B

p2ðrÞ ¼ b0 þ b1r þ b2r2 þ � � � ð35Þ

It can be shown that Eq. (30) is exactly satisfied by Eq. (35), providing that

a�1 ¼
K0c�1
d
22 � d
11

; a0 ¼ 0; b0 ¼ � a�1
d
12

; b1 ¼ d
22b0;

bj ¼
1

j
ðd
21aj�3 þ d
22bj�1 � 2K0cj�3Þ for j ¼ 2; 3; . . . ;

aj ¼
1

j
ðd
11aj�1 þ d
12bjþ1 þ K0cj�1Þ for j ¼ 1; 2; . . .

ð36Þ

This concludes the development of the particular solution. The particular solution exactly determines the

effect of the temperature on the deformation of the FGM cylinder, which causes tractions on the cylindrical

surfaces that in general do not vanish. The two homogeneous solutions to Eq. (30) with HðrÞ ¼
�2r2HðrÞ ¼ 0 should be added to the particular solution to cancel the redundant tractions. The thermo-

elasticity solution of the axisymmetric problem for the FGM cylinder is obtained as
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ur ¼
ðj � 1ÞAðrÞr

2lðrÞ � BðrÞ
2lðrÞr þ aðrÞð1þ mÞ½F ðrÞ þ GðrÞ log r�r; uh ¼ uz ¼ 0;

rr ¼ 2AðrÞ þ BðrÞ
r2

; rh ¼ 2AðrÞ � BðrÞ
r2

;

rz ¼ mðrr þ rhÞ � 2aðrÞlðrÞð1þ mÞ½F ðrÞ þ GðrÞ log r�; rzr ¼ rrh ¼ rhz ¼ 0;

ð37Þ

where

AðrÞ ¼ A1ðrÞ þ A2ðrÞ þ ApðrÞ; BðrÞ ¼ B1ðrÞ þ B2ðrÞ þ BpðrÞ; ð38Þ
where A1ðrÞ, A2ðrÞ, B1ðrÞ and B2ðrÞ are the homogeneous solutions.
The fact that Eq. (37) is exact follows from the solution procedure and the derivation. The exactness can

also be proven as follows. The three displacement components in Eq. (37) are continuous and single-valued.

From them the six stress components can be derived by Eq. (23), Hooke�s law, and the result is as shown in
Eq. (37). That these stress components satisfy the equations of equilibrium can be confirmed by directly

substituting them into the equations.

When p < 0, E1ðprÞ in Eqs. (26) and (28) should be replaced with E1ð�prÞ, whereas c0 and cj in Eq. (31)
should be rewritten as

c0 ¼ �pF0 þ qcF0 þ qG0 þ F0q logð�pÞ;

cj ¼
F0qð�1Þjð�pÞj

jj!
þ F0ð�pÞ

jþ1

ðjþ 1Þ! :
ð39Þ

Elsewhere, the result remains unchanged.

4. Thermal stresses: temperatures of h-dependence

The thermal stresses in the FGM cylinder that are induced by the temperature field (18) for
n ¼ 1; 2; 3; . . . are sought. First we treat the case of n ¼ 1 separately. After that, the cases of n ¼ 2; 3; . . . will
be treated in a unified manner.

4.1. Solution for n ¼ 1

As an initial step to deal with the case of n ¼ 1, consider a homogeneous cylinder that is affected by the

temperature field (Eq. (13))

T ðr; hÞ ¼ F1r
�

þ G1
r

�
cos h; ð40Þ

where F1 and G1 are constants. Except for rz, the temperature (40) does not bring about thermal stresses in
homogeneous cylinders (Boley and Weiner, 1960). Each sub-cylinder in the piecewise homogeneous cyl-

inder is free from rr, rh, and rrh. At the interfaces, however, displacement discontinuity generally occurs
due to different thermal expansions in different sub-cylinders. Traction systems at the interfaces are thus set

up to eliminate the discontinuity in displacements in both the r and the h directions. For n ¼ 1, these

traction systems can be deduced from the following stress function:

/ðr; hÞ ¼ Ar3 cos h þ Br log r cos h þ Crh sin h þ D
r
cos h: ð41Þ

It is known that displacements ur and uh are derived from B log r cos h, and Crh sin h in Eq. (41) are multi-
valued. The elimination of the multi-valuedness necessitates
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C ¼ j0B; j0 ¼
1þ j
1� j

: ð42Þ

Consider the continuity conditions of the stresses and displacements on any one of the interfaces, for

instance the innermost interface. Using Eqs. (23), (40), (41)–(42), the continuity conditions can be written as

uð2Þr ðr1; hÞ ¼ uð1Þr ðr1; hÞ; ð43Þ

where uðaÞr ðr1; hÞ (a ¼ 1 or 2) can be expressed as

uðaÞr ðr1; hÞ ¼ AðaÞ j � 2
2lð2Þ r

2
1

�
þ BðaÞ

4lðaÞ ð1½f þ j0Þj � 1þ j0� log r1 � 1� j0g þ
DðaÞ

2lðaÞr21

þ ð1þ mÞað2Þ F ðaÞr21
2

�
þ GðaÞ log r1

�
þ U ðaÞ

�
cos h; ð44Þ

and

uð2Þh ðr1; hÞ ¼ uð1Þh ðr1; hÞ; ð45Þ
where uðaÞh ðr1; hÞ (a ¼ 1 or 2) can be expressed as

uðaÞh ðr1; hÞ ¼ AðaÞ j þ 2
2lðaÞ r

2
1

�
þ BðaÞ

4lðaÞ 1½f � j0 � ð1þ j0Þj� log r1 � 1� j0g þ
DðaÞ

2lðaÞr21

þ ð1þ mÞaðaÞ F ðaÞr21
2

�
� GðaÞðlog r1 þ 1Þ � U ðaÞ

��
sin h: ð46Þ

In Eqs. (44) and (46), U ð1Þ and U ð2Þ are rigid-body displacements that have no effect on strains and stresses,

and they will be ignored in the further development. Furthermore,

rð2Þ
r ðr1; hÞ ¼ rð1Þ

r ðr1; hÞ; ð47Þ

where rðaÞ
r ðr1; hÞ (a ¼ 1 or 2) can be expressed as

rðaÞ
r ðr1; hÞ ¼ 2AðaÞr1

�
þ ð1þ 2j0ÞBðaÞ

r1
� 2D

ðaÞ

r31

�
cos h; ð48Þ

and

rð2Þ
rh ðr1; hÞ ¼ rð1Þ

rh ðr1; hÞ; ð49Þ

where rðaÞ
rh ðr1; hÞ (a ¼ 1 or 2) can be expressed as

rðaÞ
rh ðr1; hÞ ¼ 2AðaÞr1

�
þ B

ðaÞ

r1
� 2D

ðaÞ

r31

�
sin h: ð50Þ

Eqs. (47)–(50) clearly show that continuity conditions (47) and (49) can be satisfied only when Bð2Þ ¼ Bð1Þ.

Further analysis of stress continuity at other interfaces confirms that all BðjÞ in the piecewise homogeneous
cylinder must be a constant: Bð1Þ ¼ Bð2Þ ¼ � � � ¼ BðnÞ ¼ B0 ¼ constant. Consequently, Eqs. (48) and (50)

reduce to

Að2Þ � D
ð2Þ

r41
¼ Að1Þ � D

ð1Þ

r41
: ð51Þ

Eqs. (43), (45), and (51) can be used to determine Að2Þ, Dð2Þ and U ð2Þ in terms of each others. Consider
Eq. (51) and the equation that is obtained by adding (43)–(45). These two equations do not contain U ð2Þ and

U ð1Þ. By applying the limiting condition, h! 0, to the two equations, we obtain
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dAðrÞ
dr

¼ c1AðrÞ þ c2
DðrÞ
r4

þ c3
B0
r2

þ ð1þ mÞlðrÞaðrÞ
1þ j

1

r2
dG1ðrÞ
dr

��
þ qG1ðrÞ

�
� dF1ðrÞ

dr
� qF1ðrÞ

�
;

dDðrÞ
dr

¼ r4
dAðrÞ
dr

; ð52Þ

where

c1 ¼
js
1þ j

; c2 ¼
s

1þ j
; c3 ¼ � sð1þ j0Þ

2ð1þ jÞ : ð53Þ

For the particular solution of Eq. (52), we propose that

ApðrÞ ¼ A�ðrÞewr; DpðrÞ ¼ D�ðrÞr4ewr; B0P ¼ 0: ð54Þ

The substitution of Eq. (54) into (52) yields

dA�ðrÞ
dr

¼ c
1A
�ðrÞ þ c2D�ðrÞ þ h�2

r2

�
þ h�1

r
þ h0 þ h1r þ h2r2

�
;

dD�ðrÞ
dr

¼ c1A�ðrÞ þ c
2

�
� 4
r

�
D�ðrÞ þ h�2

r2

�
þ h�1

r
þ h0 þ h1r þ h2r2

�
;

ð55Þ

where

c
1 ¼ c1 � w; c
2 ¼ c2 � w;
h�2 ¼ c4ðqg0 þ g1 þ f�1Þ; h�1 ¼ c4ðqg1 þ 2g2 � qf�1Þ; h0 ¼ c4ðqg2 þ 3g3 � qf0 � f1Þ;
hj ¼ c4½qgjþ2 þ ðjþ 3Þgjþ3 � qfj � ðjþ 1Þfjþ1�; j ¼ 1; 2; . . . ;

c4 ¼
ð1þ mÞa0l0
1þ j

:

ð56Þ

To find a particular solution, A�
pðrÞ and D�

pðrÞ, to Eq. (55), we suppose that

A�
pðrÞ ¼

a�3
r3

þ a�2
r2

þ a�1
r

þ a0 þ a1r þ a2r2 þ � � � ;

D�
pðrÞ ¼

d�4
r4

þ d�3
r3

þ d�2
r2

þ d�1
r

þ d0 þ d1r þ d2r2 þ � � �
ð57Þ

It is confirmed that Eq. (55) is exactly satisfied by Eq. (57), provided that we take

a�3 ¼ � c2d�4
3

; d�3 ¼ c
2d�4; a�2 ¼ � c


1a�3 þ c2d�3

2
; d�2 ¼

c1a�3 þ c
2d�3
2

;

a�1 ¼ �ðc
1a�2 þ c2d�2 þ h�2Þ; d�1 ¼
c1a�2 þ c
2d�2 þ h�2

3
; ð58Þ

In Eq. (58), a�3, d�3, a�2, d�2, a�1, and d�1 are determined in terms of d�4, the value of which can be fixed by
the following equation:

c
1a�1 þ c2d�1 þ h�1 ¼ 0: ð59Þ
Eq. (59) is a linear algebraic equation for d�4, which can be exactly solved as

a0 ¼ 0; d0 ¼
1

4
ðc1a�1 þ c
2d�1 � 4d0 þ h�1Þ;

aj ¼
c
1aj�1 þ c2ðdj�1 � 4d0 þ hjÞ

j
; dj ¼

c1aj�1 þ c
2 dj�1 � 4dj þ hj
� �
j

; j ¼ 1; 2; . . .

ð60Þ

K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 2355–2380 2365



With the use of Eq. (54), the particular solution to Eq. (52), ApðrÞ and DpðrÞ, can be obtained directly from
A�ðrÞ and D�ðrÞ.
Finally, the thermal stresses in the FGM cylinder can be expressed, in terms of AðrÞ ¼ AhðrÞ þ ApðrÞ,

DðrÞ ¼ DhðrÞ þ DpðrÞ and B0 ¼ B0h þ B0p, where the homogeneous solutions AhðrÞ, DhðrÞ, and B0h are given
as follows:

rr ¼ 2AðrÞr
�

þ ð1þ 2j0ÞB0
r

� 2DðrÞ
r3

�
cos h;

rh ¼ 6AðrÞr
�

þ B0
r
þ 2DðrÞ

r3

�
cos h; rrh ¼ 2AðrÞr

�
þ B0
r
� 2DðrÞ

r3

�
sin h;

rz ¼ mðrr þ rhÞ � 2aðrÞlðrÞð1þ mÞ F1ðrÞr
�

þ G1ðrÞ
r

�
; rzr ¼ rhz ¼ 0:

ð61Þ

That solution (61) is exact can be confirmed in a similar manner to the confirmation for solution (37).

4.2. Solution for n ¼ 2; 3; . . .

Now turn to the case of n ¼ 2; 3; . . . in Eq. (18). To begin, we consider a homogeneous cylinder that is
subjected to the temperature field

T ðr; hÞ ¼ Fnrn
�

þ Gn
rn

�
cos nh; n ¼ 2; 3; . . . ; ð62Þ

where Fn and Gn are constants. The temperature (62) does not bring about thermal stresses in the piecewise
homogeneous cylinder, except for rz (Boley and Weiner, 1960). As in the case of n ¼ 1, however, traction

systems on the interfaces of the piecewise homogeneous cylinder are set up to eliminate the discontinuity in

displacements at the interfaces. These traction systems can be deduced from the following stress function:

/ðr; hÞ ¼ Arnþ2
�

þ B
rn�2

þ Crn þ D
rn

�
cos nh: ð63Þ

By using stress function (63) and (23), the continuity conditions that apply at all of the interfaces can be

written down. For instance, for the innermost interface we have

uð2Þr ðr1; hÞ ¼ uð1Þr ðr1; hÞ; ð64Þ

where uðaÞr ðr1; hÞ (a ¼ 1 or 2) can be expressed as

uðaÞr ðr1; hÞ ¼ AðaÞ j � n� 1
2lð2Þ rnþ11

�
þ BðaÞ j þ n� 1

2lðaÞrn�11

� CðaÞ nr
n�1
1

2lðaÞ þ D
ðaÞ n
2lðaÞrnþ11

þ ð1þ mÞaðaÞ F ðaÞrnþ11

nþ 1

�
� GðaÞ

ðn� 1Þrn�11

��
cos nh; ð65Þ

and

uð2Þh ðr1; hÞ ¼ uð1Þh ðr1; hÞ; ð66Þ

where uðaÞh ðr1; hÞ (a ¼ 1 or 2) can be expressed as
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uðaÞh ðr1; hÞ ¼ AðaÞ j þ nþ 1
2lðaÞ rnþ11

�
þ BðaÞ n� j � 1

2lðaÞrn�11

þ CðaÞ nr
n�1
1

2lðaÞ þ D
ðaÞ n
2lðaÞrnþ11

þ ð1þ mÞaðaÞ F ðaÞrnþ11

nþ 1

�
þ GðaÞ

ðn� 1Þrn�11

��
sin nh; ð67Þ

and

rð2Þ
r ðr1; hÞ ¼ rð1Þ

r ðr1; hÞ; ð68Þ

where rðaÞ
r ðr1; hÞ (a ¼ 1 or 2) can be expressed as

rðaÞ
r ðr1; hÞ ¼ AðaÞð2

�
� nÞðnþ 1Þrn1 þ BðaÞ ð1� nÞðnþ 2Þ

rn1
þ CðaÞnð1� nÞrn�21 � DðaÞ nðnþ 1Þ

rnþ2

�
cos nh;

ð69Þ

and

rð2Þ
rh ðr1; hÞ ¼ rð1Þ

rh ðr1; hÞ; ð70Þ

where rðaÞ
rh ðr1; hÞ (a ¼ 1 or 2) can be expressed as

rðaÞ
rh ðr1; hÞ ¼ nðn

�
þ 1Þrn1AðaÞ þ nð1� nÞ

rn1
BðaÞ þ nðn� 1Þrn�21 CðaÞ � nðnþ 1Þ

rnþ21

DðaÞ
�
sin nh: ð71Þ

Through the limiting procedure h! 0, Eqs. (64), (66), (68), and (70) become a system of differential

equations as

P ¼ CvþH; ð72Þ

where

P ¼ dAðrÞ
dr

dBðrÞ
dr

dCðrÞ
dr

dDðrÞ
dr

� �T
;

C ¼

c11 c12 c13 c14

c21 c22 �
2n
r

c23 c24

c31 c32 c33 �
2

r
c34

c41 c42 c43 c44 �
2nþ 2
r

2666666664

3777777775
;

v ¼ ½AðrÞ BðrÞ CðrÞ DðrÞ �T;

H ¼ ½H1ðrÞ H2ðrÞ H3ðrÞ H4ðrÞ �T
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in which

C ¼

sj
1þ j

�ð1� nÞs
1þ j

0
ns
1þ j

�ðnþ 1Þs
1þ j

sj
1þ j

� 2n
r

� ns
1þ j

0

ðnþ 1Þð1� jÞs
nð1þ jÞ � ðn2 � 1þ jÞs

nð1þ jÞ
s

1þ j
� 2
r

�ðnþ 1Þs
1þ j

ðn2 � 1þ jÞs
nð1þ jÞ

ð1� nÞðj � 1Þs
nð1þ jÞ � ð1� nÞs

1þ j
s

1þ j
� 2nþ 2

r

26666666666664

37777777777775
;

H ¼ �
eEE eFF

ðnþ 1Þ
eEE eGG

ðn� 1Þ
eEE
n

r2eFF �
eGG

ðn� 1Þr2n�2

( )
�
eEE
n

r2nþ2

1þ n
eFF þ r2 eGG� �" #T

; ð73Þ

eEE ¼ 2ð1þ mÞ
ð1þ jÞ aðrÞlðrÞ; eFF ¼ qF ðrÞ þ dF ðrÞ

dr
; eGG ¼ qGðrÞ þ dGðrÞ

dr
:

To facilitate the solution of the simultaneous differential equations (72), we put

AðrÞ ¼ A�ðrÞewr; BðrÞ ¼ B�ðrÞr2newr; CðrÞ ¼ C�ðrÞr2ewr; DðrÞ ¼ D�ðrÞr2nþ2ewr; w ¼ qþ s: ð74Þ
To recast Eqs. (72) into the following form:

P� ¼ C�v� þH�; ð75Þ
where

P� ¼ dA�ðrÞ
dr

dB�ðrÞ
dr

dC�ðrÞ
dr

dD�ðrÞ
dr

� �T
;

C
 ¼

c
11 c
12 c
13 c
14

c
21 c
22 �
2n
r

c
23 c
24

c
31 c
32 c
33 �
2

r
c
34

c
41 c
42 c
43 c
44 �
2nþ 2
r

266666664

377777775
;

v� ¼ A�ðrÞ B�ðrÞ C�ðrÞ D�ðrÞ½ �T;

H� ¼ H �
1 ðrÞ H �

2 ðrÞ H �
3 ðrÞ H �

4 ðrÞ½ �T

in which

c
ði; jÞ ¼ cði; jÞ; i 6¼ j; c
ði; jÞ ¼ cði; jÞ � w; i ¼ j;

H� ¼ �
eEE�eFF

ðnþ 1Þ
eEE� eGG

r2nðn� 1Þ
eEE�

nr2
r2eFF �

eGG
ðn� 1Þr2n�2

( )
�

eEE�

nr2nþ2
r2nþ2ð ÞeFF
1þ n þ r2 eGG( )" #T

; ð76Þ

eEE�ðrÞ ¼ 2ð1þ mÞ
ð1þ jÞ a0l0:
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Using Eqs. (16) and (17), H �
j ðrÞ, j ¼ 1; 2; 3; 4, can be expanded into the series form

H� ¼ H�
1ðrÞ H�

2ðrÞ H�
3ðrÞ H�

4ðrÞ½ �T;
where

H�
aðrÞ ¼

ha;�2n

r2n
þ ha;�ð2n�1Þ

r2n�1
þ � � � þ ha;�2

r2
þ ha;�1

r
þ ha;0 þ ha;1r þ ha;2r2 þ � � � ;

h1;j ¼ �
eEE�

ðnþ 1Þ ½qfj þ ðjþ 1Þfjþ1�; f�2n ¼ 0;

h2;j ¼
eEE�

ðn� 1Þ ½qgjþ2n þ ðjþ 2nþ 1Þgjþ2nþ1�;

h3;j ¼ � 1
n
½h2;j þ ðnþ 1Þh1;j�;

h4;j ¼
1

n
½h1;j � ðn� 1Þh2;j�

ð77Þ

in which j ¼ �2n;�ð2n� 1Þ; . . . ;�2;�1; 0; 1; 2; . . .
To find the particular solution for Eqs. (75), we propose that

A�
pðrÞ ¼

a�ð2n�1Þ

r2n�1
þ a�ð2n�2Þ

r2n�2
þ � � � þ a�2

r2
þ a�1

r
þ a0 þ a1r þ � � � ;

B�
pðrÞ ¼

b�2n
r2n

þ b�ð2n�1Þ

r2n�1
þ b�ð2n�2Þ

r2n�2
þ � � � þ b�2

r2
þ b�1

r
þ b0 þ b1r þ � � � ;

C�
pðrÞ ¼

c�ð2n�1Þ

r2n�1
þ c�ð2n�2Þ

r2n�2
þ � � � þ c�2

r2
þ c�1

r
þ c0 þ c1r þ � � � ;

D�
pðrÞ ¼

d�ð2n�1Þ

r2n�1
þ d�ð2n�2Þ

r2n�2
þ � � � þ d�2

r2
þ d�1

r
þ d0 þ d1r þ � � �

ð78Þ

By substituting Eq. (78) into (75) and the equating of the coefficients of like terms on both sides of the
resulting equations, the following formulas are obtained:

a�ð2n�1Þ ¼ � c


12b�2n þ h1;�2n
2n� 1 ; b�ð2n�1Þ ¼ c
22b�2n þ h2;�2n;

c�ð2n�1Þ ¼ � c


32b�2n þ h3;�2n
2n� 3 ; d�ð2n�1Þ ¼

c
42b�2n þ h4;�2n
3

;

Na ¼ c
a1a�ð2n�jþ1Þ þ c
a2b�ð2n�jþ1Þ þ c
a3c�ð2n�jþ1Þ þ c
a4d�ð2n�jþ1Þ þ ha;�ð2n�jþ1Þ;

a�ð2n�jÞ ¼ � N1

2n� j ; b�ð2n�jÞ ¼
N2

j
; c�ð2n�jÞ ¼ � N3

2n� j� 2 ; d�ð2n�jÞ ¼
N4
jþ 2 ;

Wa;b ¼ c
a1a�b þ c
a2b�b þ c
a3c�b þ c
a4d�b þ ha;�b;

a�2 ¼ �W1;3

2
; b�2 ¼

W2;3

2n� 2 ; d�2 ¼
W4;3

2n
;

ð79Þ

where j ¼ 2; 3; . . . ; 2n� 3.
In Eq. (79), the coefficients aj, bj, cj, and dj are expressed exactly in terms of a constant b�2n, the exact

value of which can be determined by the following equation:

c
31a�3 þ c
32b�3 þ c
33c�3 þ c
34d�3 þ h3;�3 ¼ 0: ð80Þ
Eq. (80) is a linear algebraic equation for b�2n, which can be exactly solved as

a�1 ¼ �W1;2; b�1 ¼
W2;2

2n� 1 ; c�1 ¼ W3;2; d�1 ¼
W4;2

2nþ 1 ; ð81Þ
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a0 ¼ 0; b0 ¼
W2;1

2n
; c0 ¼

W3;1

2
; d0 ¼

W4;1

2nþ 2 : ð82Þ

The coefficients that are expressed in Eqs. (81) and (82) are given in terms of a constant c�2, the exact value
of which can be determined by the following equation:

c
11a�1 þ c
12b�1 þ c
13c�1 þ c
14d�1 þ h1;�1 ¼ 0: ð83Þ

Eq. (83) is a linear algebraic equation for c�2, which can be solved exactly:

aj ¼
W1;j�1

j
; bj ¼

W2;j�1

2nþ j ; cj ¼
W3;j�1

2þ j ; dj ¼
W4;j�1

2nþ 2þ j ; ð84Þ

where j ¼ 1; 2; 3; . . .
The particular solution to Eq. (72), ApðrÞ, etc., can be obtained from solution (78) using Eq. (74). The

thermal stresses in the FGM cylinder can be expressed, in terms of AðrÞ ¼ AhðrÞ þ ApðrÞ,
BðrÞ ¼ BhðrÞ þ BpðrÞ, CðrÞ ¼ ChðrÞ þ CpðrÞ, and DðrÞ ¼ DhðrÞ þ DpðrÞ, as follows:

rr ¼ ðn
�

þ 1Þð2� nÞAðrÞrn þ ð1� nÞðnþ 2ÞBðrÞ
rn

þ nð1� nÞCðrÞrn�2 � nð1þ nÞDðrÞ
rnþ2

�
cos h;

rrh ¼ nðn
�

þ 1ÞAðrÞrn þ nð1� nÞBðrÞ
rn

þ nðn� 1ÞCðrÞrn�2 � nð1þ nÞDðrÞ
rnþ2

�
sin h;

rz ¼ mðrr þ rhÞ � 2aðrÞlðrÞð1þ mÞ FnðrÞr
�

þ GnðrÞ
r

�
; rzr ¼ rhz ¼ 0:

ð85Þ

That solution (85) is exact can be confirmed in a manner that is similar to the confirmation for solution (37).

Temperatures (40) and (62) are even functions in h, and induce displacements and stresses that are
symmetric to the polar axis h ¼ 0. Another type of temperature distribution, when cos h in (40) and (62) is
replaced with sin h, induces displacements and stresses that are antisymmetric with respect to the polar axis.
Exact expressions for these displacements and stresses can be obtained by a procedure that is quite similar

to that which is used for cos h, and the details are therefore omitted.

5. Results and discussion

5.1. Temperature distribution brings about no thermal stresses

In the axisymmetric case, Eq. (12) shows that T ðrÞ ¼ T0 ¼ constant is a temperature solution for the

FGM cylinder. Unlike homogeneous materials that can expand freely in a constant temperature field, the

expansion of FGM materials is constrained, and large values of rr and rh can be generated, as shown in
Fig. 1. The thermal stresses rr and rh vanish only when q ¼ 0. However, for q ¼ 0, aðrÞ ¼ a0 ¼ constant

and the FGM cylinder is homogeneous with respect to thermal expansion.

When the temperature is h-dependent, thermal stresses rr, rrh, and rh occur in the FGM cylinder even

when q ¼ 0, as shown in Fig. 2. This is because temperature solution (18) is no longer a harmonic function

of the homogeneous temperature solution, due to the r-dependence of the thermal conductivity kðrÞ. Only
when q and p are both zero can the FGM cylinder be without thermal stresses rr, rrh, and rh, i.e. only when

the FGM cylinder is de facto homogeneous with respect to both thermal expansion and thermal con-

ductance.
An important problem in thermoelasticity is that the temperature field that does not induce thermal

stresses (Boley and Weiner, 1960). It follows from the above analysis that for a FGM cylinder the only
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Fig. 1. Thermal stresses induced by uniform temperature (q ¼ 0; 0:25).

Fig. 2. Thermal stresses induced by h-dependent temperature (n ¼ 2, q ¼ 0).
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temperature field that induces no rr, rrh, or rh is the trivial case, T ðr; hÞ ¼ 0. This conclusion can be
generalized to other FGM configurations by the following simple reasoning.

In Fig. 3 a cross-section of a FGM hollow circular cylinder is shown. In the stress-free state, the cross-

section can actually be looked upon as consisting of two cross-sections: one belonging to a cylindrical body

with cross-section C, and the other to the hollow circular cylinder that is perforated by the cylindrical body
bounded by C. As T ðr; hÞ ¼ 0 is the unique temperature distribution that causes no rr, rrh, or rh in the

FGM cylinder, this should be equally true for the two cylindrical bodies that are indicated above. Because

contour C can be of any shape and dimension, it follows that for any plane configuration of FGM,

T ðr; hÞ ¼ 0 is the unique temperature distribution that does not cause stresses rr, rrh, or rh.

5.2. Numerical computation of thermal stresses

The numerical results that are determined from the theoretical solutions that were developed in the

foregoing sections are discussed in this sub-section. Plane strain, m ¼ 1=3, p ¼ 1=2, s ¼ 1=2, r0 ¼ 1, rN ¼ 2
and free traction boundary conditions on the inner and outer boundaries are assumed in all of the nu-

merical results.

For uniform temperature T0, thermal stresses rr and rh are shown in Fig. 1 for q ¼ 0 and 0.25, and in

Figs. 4 and 5 for q ¼ 0:5 and 1 respectively. The result for q ¼ 0 demonstrates that thermal stresses are set

up in the FGM cylinder even when the material is homogeneous with respect to thermal expansion, i.e.

when aðrÞ ¼ a0 ¼ constant. As expected, a larger q brings about larger values of thermal stresses.
For temperatures with h-dependence, under the following temperature boundary conditions:

r ¼ r0; T ¼ 0; r ¼ rN ; T ¼ T0 cos nh; ð86Þ

rr, rrh, and rh are depicted in Figs. 6–8 (n ¼ 2, q ¼ 0:25; 0:5; 1), Figs. 9–11 (n ¼ 4, q ¼ 0:25; 0:5; 1) and
Figs. 12–14 (n ¼ 8, q ¼ 0:25; 0:5; 1). Fig. 2 demonstrates the thermal stresses in the FGM cylinder for n ¼ 2

and q ¼ 0. In Figs. 2 and 6–14, the values of rr and rh are given for h ¼ 0, and those of rrh for h ¼ p=2n.
From the numerical results one sees that rh is the predominant stress, with its maxima in magni-

tude exceeding those of rr and rrh in all cases. Thermal expansion in the FGM cylinder is restrained by the

non-homogeneous properties kðrÞ and aðrÞ in addition to temperature distributions. A small change in
the thermal expansion index q will bring about large changes in the magnitude of thermal stresses or the

Fig. 3. A cross-section of a FGM hollow circular cylinder.
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Fig. 6. Thermal stresses induced by h-dependent temperature (n ¼ 2, q ¼ 0:25).

Fig. 7. Thermal stresses induced by h-dependent temperature (n ¼ 2, q ¼ 0:5).

2374 K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 2355–2380



Fig. 8. Thermal stresses induced by h-dependent temperature (n ¼ 2, q ¼ 1).

Fig. 9. Thermal stresses induced by h-dependent temperature (n ¼ 4, q ¼ 0:25).

K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 2355–2380 2375



Fig. 10. Thermal stresses induced by h-dependent temperature (n ¼ 4, q ¼ 0:5).
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Fig. 11. Thermal stresses induced by h-dependent temperature (n ¼ 4, q ¼ 1).
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reversal of direction, as indicated in Figs. 1, 2, 4 and 5. It follows that thermal stresses in the FGM cylinder

are affected by more factors than are its homogeneous counterparts, and it is more complicated to evaluate.

The theoretical solutions are well suited to numerical manipulation, and provide accurate and reliable

numerical results in the figures when 20–40 terms are included in the series.

5.3. General properties of thermal stresses

Some general properties can be drawn for thermal stresses in the FGM cylinder. The usefulness of a

particular numerical result can be extended by using these general properties.

Under uniform temperature, the thermal stresses are dependent on, in addition to the variable r, the
parameters T0, a0, l0, q, s, r0, and rN . For a fixed set of the parameters, the corresponding radial stress is
denoted by rrðr; T0; a0; l0; q; s; r0; rN Þ. A simple examination of the solution shows that rr is proportional to
T0. This fact can more precisely be expressed by the following formula:

rrðr;mT0; a0; l0; q; s; r0; rN Þ ¼ mrrðr; T0; a0; l0; q; s; r0; rN Þ; ð87Þ

where m is a real number. Likewise, for m to be positive, we have

rrðr; T0;ma0; l0; q; s; r0; rN Þ ¼ mrrðr; T0; a0; l0; q; s; r0; rN Þ;

rrðr; T0; a0;ml0; q; s; r0; rN Þ ¼ mrrðr; T0; a0; l0; q; s; r0; rN Þ;

rr
r
m
; T0; a0; l0;mq;ms;

r0
m
;
rN
m

� �
¼ rrðr; T0; a0; l0; q; s; r0; rN Þ:

ð88Þ

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

σ/
(α

0
0T

0)
µ

1.0 . 1.4 1.6 1.8 2.

r/r r0

r

r

r

σ
σ
σ

θ

1 2 0

Fig. 12. Thermal stresses induced by h-dependent temperature (n ¼ 8, q ¼ 0:25).
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The last formula in Eq. (88) indicates that rr in a FGM cylinder at point r equals that in another FGM
cylinder, which is 1=m times larger or smaller in geometry and m times in q and s, at the geometrically
similar point r=m.
When the temperature is h-dependent, rr depends on the parameters T0, a0, l0, q, s, r0, rN , n, and p. We

then have the following general properties:

rrðr;mT0; a0; l0; q; s; r0; rN ; n; pÞ ¼ mrrðr; T0; a0; l0; q; s; r0; rN ; n; pÞ; ð89Þ

where m is real, and for m to be positive

rrðr; T0;ma0; l0; q; s; r0; rN ; n; pÞ ¼ mrrðr; T0; a0; l0; q; s; r0; rN ; n; pÞ;
rrðr; T0; a0;ml0; q; s; r0; rN ; n; pÞ ¼ mrrðr; T0; a0; l0; q; s; r0; rN ; n; pÞ;

rr
r
m
; T0; a0; l0;mq;ms;

r0
m
;
rN
m
; n;mp

� �
¼ rrðr; T0; a0;l0; q; s; r0; rN ; n; pÞ:

ð90Þ

Eqs. (87)–(90) remain true when rr is replaced by rrh or rh. These analytic observations have been con-

firmed by numerical verification.

5.4. Extension of the solutions

The thermal stress solutions are obtained for the steady-state temperature distributions of series forms

(12) and (18). By replacing the coefficients in the series with suitable constants, the resultant series can

represent the transient temperature distributions at a certain time t. The developed solutions can then be
used to evaluate the transient thermal stresses in FGM cylinders.
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Fig. 13. Thermal stresses induced by h-dependent temperature (n ¼ 8, q ¼ 0:5).
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The development is based on a plane strain condition. The result for generalized plane stress can be

obtained by letting j ¼ ð3� mÞ=ð1þ mÞ and introducing a few other amendments that are well known in the
theory of elasticity.

6. Conclusions

This article presents an analysis of the temperature and thermal stresses in a FGM hollow circular

cylinder. It also provides a new solution method for thermal stresses in homogeneous cylinders as a special

case. By using the solutions, particular digital values can be obtained, and systematic parameter study can

be carried out with simple numerical manipulations. The case of h-dependence, which appears to be un-
touched in the existing literature, is covered in the solutions. The solutions are obtained by a novel ap-

proach: the matching of the homogeneous solutions with ingenuous propositions for the solution form in

the semi-inverse method. These results will be useful for future reference.
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